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Overview

● Unsupervised Learning

● Generative Models

○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Part 2 Feb 14, 2020Julie Hussin & Ahmad Pesaranghader



Generative Adversarial Nets in Genomics

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.

Classification

This image is CC0 public domain
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The breast cancer histology image dataset

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.

This image is CC0 public domain

Object Detection
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Lung nodule detection with several levels of malignancy 
(LIDC dataset)

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.

Semantic Segmentation
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BraTs-Segmentation-Challenge
(Brain MRI)



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.

Image captioning
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Caption generated using neuraltalk2  
Image is CC0 Public domain.

Medical Report Captioning

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning

K-means or t-SNE clustering

This image is CC0 public domain
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K-means clustering of gliomas by signature-defining proteins

https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Autoencoders
(Feature learning/representation)
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation
2-d density images left and right  
are CC0 public domain

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation
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https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,  
regression, object detection,  
semantic segmentation, image  
captioning, etc.
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Generative Models
Given training data, generate new samples from same distribution

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)
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Generative Models
Given training data, generate new samples from same distribution

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve for pmodel(x)
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models  
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models  
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

GSN

GANToday: discuss 2 most  
popular types of generative  
models today
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Variational  
Autoencoders (VAE)
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Some background first: 
Autoencoders

Features

Encoder

Input data

Unsupervised approach for learning a lower-dimensional feature representation  
from unlabeled training data

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020



Some background first: 
AutoencodersUnsupervised approach for learning a lower-dimensional feature representation  
from unlabeled training data

Originally: Linear +  
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features

Encoder

Input data
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Some background first: 
Autoencoders

Features

Encoder

Input data

Unsupervised approach for learning a lower-dimensional feature representation  
from unlabeled training data

Originally: Linear +  
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality  
reduction?
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Some background first: 
Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation  
from unlabeled training data

Originally: Linear +  
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality  
reduction?

A: Want features to  
capture meaningful  
factors of variation in  
data
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Some background first: 
Autoencoders

Features

Encoder

Input data

How to learn this feature representation?
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Some background first: 
AutoencodersHow to learn this feature representation?
Train such that features can be used to reconstruct original data  
“Autoencoding” - encoding itself

Reconstructed  
input data

Decoder

Features

Encoder

Input data
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Some background first: 
Autoencoders

Decoder

Features

Encoder

Input data

How to learn this feature representation?
Train such that features can be used to reconstruct original data  
“Autoencoding” - encoding itself

Originally: Linear +

Reconstructed  
input data

nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)
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Some background first: 
Autoencoders

Features

Encoder

Input data

How to learn this feature representation?
Train such that features can be used to reconstruct original data  
“Autoencoding” - encoding itself

Decoder

Reconstructed  
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv
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Some background first: 
Autoencoders

Input data

Features

Reconstructed  
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function:
Train such that features
can be used to  
reconstruct original data
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Some background first: 
Autoencoders

Input data

Reconstructed  
input data

Features

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data

L2 Loss function:
Train such that features  
can be used to  
reconstruct original data

Doesn’t use labels!
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Some background first: 
Autoencoders

Encoder

Input data

Features

Decoder

Reconstructed  
input data

After training,
throw away decoder
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Some background first: 
Autoencoders

Encoder

Input data

Features

Classifier

Predicted Label
Fine-tune  
encoder  
jointly with  
classifier

Loss function  
(Softmax, etc)

Encoder can be  
used to initialize a  
supervised model

plane
dog deer

bird
truck

Train for final task  
(sometimes with  

small data)
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Some background first: 
Autoencoders

Features

Encoder

Input data

Decoder

Reconstructed  
input data

Autoencoders can reconstruct  
data, and can learn features to  
initialize a supervised model

Features capture factors of  
variation in training data. Can we  
generate new images from an  
autoencoder?
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from  
true prior

Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data            is generated from underlying unobserved (latent)  
representation z

Sample from  
true conditional

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data            is generated from underlying unobserved (latent)  
representation z

Sample from  
true conditional

Intuition (remember from autoencoders!):  
x is an image, z is latent factors used to  
generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How should we represent this model?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.  
Gaussian. Reasonable for latent attributes,
e.g. pose, how much smile.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.  
Gaussian.

Conditional p(x|z) is complex (generates  
image) => represent with neural network

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How to train the model?

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How to train the model?

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Learn model parameters  to maximize 
likelihood of training data



Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How to train the model?

Now with latent z

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Learn model parameters  to maximize 
likelihood of training data



Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How to train the model?

Learn model parameters  to maximize 
likelihood of training data

Q: What is the problem with this?

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from  
true prior

Variational Autoencoders

Sample from  
true conditional

We want to estimate the true parameters  
of this generative model.

How to train the model?

Learn model parameters  to maximize 
likelihood of training data

Q: What is the problem with this?  

Intractable!

Decoder  
network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood:

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
✔ 

Data likelihood:

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔ 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Part 2 Feb 14, 2020Julie Hussin & Ahmad Pesaranghader



Variational Autoencoders: Intractability

Data likelihood:

Intractible to compute  
p(x|z) for every z!

:( ✔ ✔ 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
:( ✔ ✔ 

Data likelihood:

Posterior density also intractable:

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood:
:( ✔ ✔ 

Posterior density also intractable:

:(
✔ ✔ 

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood:
:( ✔ ✔ 

ʰ✔ ✔ 
Posterior density also intractable:

Solution: In addition to decoder network modeling pθ(x|z), define additional  
encoder network qɸ(z|x) that approximates pθ(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that 
is  tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders
Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic  

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Encoder network Decoder network

(parameters ɸ) (parameters θ)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Part 2 Feb 14, 2020Julie Hussin & Ahmad Pesaranghader



Variational Autoencoders

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called  
“recognition”/“inference” and “generation” networks
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Taking expectation wrt. z  
(using encoder network) will  
come in handy later
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

The expectation wrt. z (using  
encoder network) let us write  
nice KL terms
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between  Gaussians 
for encoder and z  prior) has nice 
closed-form  solution!

pθ(z|x) intractable (saw  
earlier), can’t compute this KL  
term :( But we know KL  
divergence always >= 0.

Decoder network gives pθ(x|z), can  
compute estimate of this term through  
sampling. (Sampling differentiable  
through reparam. trick, see paper.)

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Tractable lower bound which we can take  
gradient of and optimize! (pθ(x|z) differentiable,  
KL term differentiable)
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”)

Julie Hussin & Ahmd Pesaranghader Feb 14, 2020Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020
Training: Maximize lower bound



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Reconstruct  
the input data

Make approximate  
posterior distribution  
close to prior

Training: Maximize lower bound

Part 2

Variational lower bound (“ELBO”)
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Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound

Let’s look at computing the bound  
(forward pass) for a given minibatch of  
input data
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound
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Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound

Make approximate  
posterior distribution  
close to prior

Encoder network

Input Data
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Sample z from

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound

Make approximate  
posterior distribution  
close to prior

Encoder network

Input Data
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Decoder network

Sample z from
Make approximate  
posterior distribution  
close to prior

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound

Make approximate  
posterior distribution  
close to prior

Encoder network

Input Data

Maximize
likelihood of  
original input  
being  
reconstructed
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Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the  
likelihood lower bound

Make approximate  
posterior distribution  
close to prior

Encoder network

Maximize
likelihood of  
original input  
being  
reconstructed

For every minibatch of input  
data: compute this forward  
pass, and then backprop!
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Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network. Now sample z from prior!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network. Now sample z from prior!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z2
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Variational Autoencoders: Generating Data!

Vary z1

Degree of smile

Diagonal prior on z
=> independent  
latent variables

Different  
dimensions of z  
encode  
interpretable factors  
of variation

Head poseVary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Part 2 Feb 14, 2020Julie Hussin & Ahmad Pesaranghader



Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent  
latent variables

Different  
dimensions of z  
encode  
interpretable factors  
of variation

Also good feature representation that  
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.
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Variational Autoencoders in Genomics
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Variational Autoencoders in Genomics

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020

They present a two-step VAE-based 
models for drug response prediction, 
which first predicts the post- from the 
pre-treatment state in an unsupervised 
manner, then extends it to the final 
semi-supervised prediction. The model 
is based on data from Genomics of 
Drug Sensitivity in Cancer (GDSC; 
Yang et al., 2013) and Cancer Cell 
Line Encyclopedia (CCLE; Barretina et 
al., 2012).



Variational Autoencoders
Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal  

Gaussian
- Incorporating structure in latent variables
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Generative Adversarial  
Networks (GAN)
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Generative Adversarial  
Networks (GAN)

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020

GANs don’t work with any explicit density function!
What they care the most, is the samples which are close to real data
(ie. learn to generate from training distribution through 2-player game)



Generative Adversarial Networks Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct  
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  
training distribution.

Q: What can we use to  
represent this complex  
transformation?
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Problem: Want to sample from complex, high-dimensional training distribution. No direct  
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  
training distribution.

Generative Adversarial Networks

zInput: Random noise

Generator  
Network

Output: Sample from  
training distribution

Q: What can we use to  
represent this complex  
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images (or DNAs, etc)
Discriminator network: try to distinguish between real and fake images (or DNAs, etc)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

zRandom noise

Generator Network

Discriminator Network

Fake Images  
(from generator)

Real Images  
(from training set)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

Discriminator output  
for real data x

Discriminator output for  
generated fake data G(z)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

Discriminator output  
for real data x

Discriminator output for  
generated fake data G(z)

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and  
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1  
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Minimax objective function:

Alternate between:
1.  For Discriminator

2. For Generator

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
Minimax objective function:

Alternate between:
1.  For Discriminator

2. For Generator

In practice, optimizing this generator objective  
does not work well!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

When sample is likely  
fake, want to learn  
from it to improve  
generator. But  
gradient in this region  
is relatively flat!

Gradient signal  
dominated by region  
where sample is  
already good
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Training GANs: Two-player game
Minimax objective function:

Alternate between:
1.  For Discriminator

2. For Generator
different  objective

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Instead of minimizing likelihood of discriminator being correct, now  
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient  
signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal
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Training GANs: Two-player game
Minimax objective function:

Alternate between:
1.  For Discriminator

2. For Generator
different  objective

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Aside: Jointly training two  
networks is challenging,  
can be unstable. Choosing  
objectives with better loss  
landscapes helps training,  
is an active area of  
research.

Instead of minimizing likelihood of discriminator being correct, now  
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient  
signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal
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Training GANs: Two-player game
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

z

Generator Network

Discriminator Network

Fake Images  
(from generator)

Random noise

Real Images  
(from training set)

After training, use generator network to  
generate new images

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Julie Hussin & Ahmad Pesaranghader Part 2 Feb 14, 2020



Generative Adversarial Nets

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generator
Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,

Samples  
from the  
model look  
amazing!
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Generative Adversarial Nets: Convolutional Architectures



Radford et al,
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Glasses man No glasses manNo glasses woman

Generative Adversarial Nets: Interpretable Vector Math



Glasses man No glasses manNo glasses woman

Woman with glasses

Radford et al,  
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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BEGAN. Bertholet et al. 2017.
CycleGAN. Zhu et al. 2017.

Better training and generation

LSGAN. Mao et al. 2017.

Source->Target domain transfer

Pix2pix. Isola 2017. Many examples at  
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Many GAN applications

Text -> Image Synthesis
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Generative Adversarial Nets in Genomics
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Generative Adversarial Nets in Genomics
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“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo
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Now, it’s time to 
practice...
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